Hernia mesh: the evolution of materials and a look into the future (literature review)
https://doi.org/10.18705/3034-7270-2025-1-2-87-93
Abstract
Mesh implants have become an integral part of modern hernia surgery. Although polypropylene remains the most used material, its limitations – such as degradation, chronic inflammation, and potential systemic immune reactions – have drawn increasing attention. As a result, alternative polymers such as polyvinylidene fluoride (PVDF) are being actively explored for their superior biocompatibility, chemical stability, and lower complication rates. This review outlines the historical evolution and current classifications of synthetic meshes used in abdominal wall reconstruction. It highlights the biomechanical, morphological, and immunological characteristics of various implant materials, with particular emphasis on PVDF-based prostheses. Future directions are also discussed, including the development of bioactive, MRI-visible, and patient-specific meshes.
About the Authors
A. M. BelousovRussian Federation
Belousov Alexander M. – Doctor of Medical Sciences, Deputy Chief Physician for Medical Affairs (Surgery, Oncology)
St. Petersburg
T. S. Filippenko
Russian Federation
Filippenko Tatiana S. – Candidate of Technical Sciences, Chief Technologist
St. Petersburg
T. Yu. Anushchenko
Russian Federation
Anushchenko Tatiana Yu. – Head of the Scientific and Production Laboratory
St. Petersburg
References
1. Matveev N.L., Belousov A.M., Bochkar V.A., Makarov S.A. Minimally invasive ventral hernia repair: apply or save? Khirurgiya. 2020;8:75–81. (In Russ.)
2. Meagher H., Clarke Moloney M., Grace P.A. Conservative management of mesh-site infection in hernia repair surgery: a case series. Hernia. 2015;19(2):231–237.
3. Nobaek S., Rogmark P., Petersson U. Negative pressure wound therapy for treatment of mesh infection after abdominal surgery: long-term results and patient-reported outcome. Scand J Surg. 2017;106(4):285–293. DOI: 10.1177/1457496917690966.
4. Lidskiy A.T. Free fascia transplantation in surgery and gynecology. Vestn. Surgery. 1926;7(19):173–77. (In Russ.)
5. Witzel O. Uber den Verschlub von Bauchwunden und Bruchpforten durch versenkte Silberdrahtnetze (Einheilung von Filigranpelotten). Zbl. Chirurgie. 1900;10:257–260.
6. Usher F.C., Ochsner J.L., Tuttle L.L. Use of marlex mesh in the repair of incisional hernia. Am Surg. 1958;24(12):969–974.
7. Amid P.K. Classification of biomaterials and their clinical implications in hernia repair. Hernia. 1997;1(1):15–21.
8. Klosterhalfen B., Junge K., Klinge U. The lightweight and large porous mesh concept for hernia repair. Expert Rev. med. Devices. 2005;2(1):103–117.
9. Zhukovsky V.A. Modern approaches to the development and production of polymer mesh endoprostheses for reconstructive surgery. Almanac of the A.V. Vishnevsky Institute of Surgery. 2008;3(2):20–21. (In Russ.)
10. Parshikov V.V. Inflammatory complications of the abdominal wall prosthetic repair: diagnostics, treatment, and prevention (review). Sovremennye tehnologii v medicine 2019;11(3):158–178. DOI: 10.17691/stm2019.11.3.19.
11. Cohen Tervaert J.W. Autoinflammatory/autoimmunity syndrome induced by adjuvants (Shoenfeld’s syndrome) in patients after a polypropylene mesh implantation. Best Pract Res Clin Rheumatol. 2019;32(4):511–520. DOI: 10.1016/j.berh.2019.01.003.
12. Chughtai B., Sedrakyan A., Mao J., et al. Is vaginal mesh a stimulus of autoimmune disease? Am J Obstetr Gynecol. 2017;216(5):495.e49–e497. DOI: 10.1016/j.ajog.2016.12.021.
13. Muller P., Gurol-Urganci I., Thakar R., et al. Impact of a midurethral synthetic mesh sling on long-term risk of systemic conditions in women with stress urinary incontinence: a national cohort study. BJOG. 2022;129(4):664–670. DOI: 10.1111/1471-0528.16917
14. Wang H., Klosterhalfen B., Müllen A., et al. Degradation resistance of PVDF mesh in vivo in comparison to PP mesh. J Mech Behav Biomed Mater. 2021;119:104490. DOI: 10.1016/j.jmbbm.2021.104490.
15. Lacorche G., Marois Y., Guidoin R., et al. Polyvinylidene fluoride (PVDF) as a biomaterial: from polymeric raw material to monofilament vascular suture. J. Biomed. Mater. Res. 1995;29(12):1525–1536.
16. Klinge U., Klosterhalfen B., Ottinger A.P., et al. PVDF as a new polymer for the construction of surgical meshes. Biomaterials. 2002;23(16):3487–3493.
17. Gorelov A.S. Substantiation and evaluation of the effectiveness of polyvinylidene fluoride mesh implants in the surgical treatment of postoperative ventral hernias (experimental and clinical study): Dissertation of the Candidate of Medical Sciences. St. Petersburg, 2008, 182 p. (In Russ.)
18. Netyaga A.A., Bezhin A.I., Plotnikov R.V., Zhukovsky V.A. Experimental substantiation of the possibility of using PVDF-monofilament endoprostheses for abdominal wall plastic surgery. Almanac of the A.V. Vishnevsky Institute of Surgery. 2008;3(2):24. (In Russ.)
19. Filipenko T.S. The development of mesh endoprostheses for reconstructive and reconstructive surgery and the study of their properties: Dissertation of the Candidate of Technical Sciences. St. Petersburg, 2009, 264 p. (In Russ.)
20. Belousov A.M., Armashov V.P., Shkarupa D.D., et al. Safety of fluoropolymer-coated mesh endoprostheses: results of a pilot study. Surgery. The N.I. Pirogov Magazine. 2023;2:43–58. (In Russ.)
21. Belousov A.M., Armashov V.P., Shkarupa D.D., et al. Histological changes in intraperitoneal plastic surgery (IPOM) with synthetic and biological endoprostheses. The results of a chronic experiment. Surgery. The N.I. Pirogov Magazine. 2023;7: 37–50. (In Russ.)
22. Belousov A.M., Nepomnyashchaya S.L., Danilin V.N., et al. The results of the clinical application of a mesh endoprosthesis with an anti-adhesive fluoropolymer coating in laparoscopic intraperitoneal plastic surgery of primary ventral hernias. Surgery. The N.I. Pirogov Magazine. 2024;5:86–94. (In Russ.)
23. Belousov A.M., Nepomnyashchaya S.L., Danilin V.N., et al. The results of the clinical application of a mesh endoprosthesis with an anti-adhesive fluoropolymer coating in laparoscopic intraperitoneal plastic surgery of postoperative ventral hernias. Russian Surgical Journal. 2025;1(1):20–27. (In Russ.)
24. Vierstraete M., Beckers R., Vangeel L., et al. Prospective cohort study on mesh shrinkage measured with MRI after robot-assisted minimal invasive retrorectus ventral hernia repair using an iron-oxide-loaded polyvinylidene fluoride mesh. Surg Endosc. 2023;37(6):4604–4612. DOI: 10.1007/s00464-023-09938-3.
25. Muysoms F., Beckers R., Kyle-Leinhase I. Prospective cohort study on mesh shrinkage measured with MRI after laparoscopic ventral hernia repair with an intraperitoneal iron oxide-loaded PVDF mesh. Surg Endosc. 2018;32(6):2822–2830. DOI: 10.1007/s00464-017-5987-x
Review
For citations:
Belousov A.M., Filippenko T.S., Anushchenko T.Yu. Hernia mesh: the evolution of materials and a look into the future (literature review). Russian surgical journal. 2025;1(2):87-93. (In Russ.) https://doi.org/10.18705/3034-7270-2025-1-2-87-93